AI-Cr-Pt (Aluminum-Chromium-Platinum)

V. Raghavan

A partial isothermal section at 1350 $^{\circ}$ C for Pt-rich alloys was reported for this ternary system by [2001Hil].

Binary Systems

The Al-Cr phase diagram [1998Mur] has at least six intermediate phases: CrAl₇ (V₇Al₄₅-type monoclinic), Cr_2Al_{11} (monoclinic), $CrAl_4$ (monoclinic), αCr_4Al_9 (Cu₄Al₉-type cubic), and α Cr₅Al₈ (D8₁₀-type rhombohedral). None of the above phases are stable at the temperature of interest here (1350 °C). The Al-Pt phase diagram [1986McA] depicts nine intermetallic phases: Pt₅Al₂₁ (cubic), Pt₈Al₂₁ (tetragonal), PtAl₂ (CaF₂-type cubic), Pt₂Al₃ (hexagonal), PtAl (FeSi-type cubic), β (52-56 at.% Pt; B2type cubic), Pt₅Al₃ (Ge₃Rh₅-type orthorhombic), Pt₂Al (PbCl₂-type orthorhombic above 1060 °C, Pt₂Ga-type orthorhombic below 1060 °C), and Pt₃Al (AuCu₃-type cubic and low-temperature form Pt₃Ga-type tetragonal). The Cr-Pt phase diagram [Massalski2] has three intermediate phases: Cr₃Pt (A15, Cr₃Si-type cubic), CrPt (L1₀, AuCutype tetragonal), and CrPt₃ (L1₂, AuCu₃-type cubic). The existence of CrPt needs clarification. About 70 at.% Cr dissolves in Pt. CrPt₃ forms congruently from (Pt) at 1130 °C [Massalski2].

Ternary Isothermal Section

With starting metals of purity \geq 99.9%, [2001Hil] melted about 10 Pt-rich ternary alloys in an arc furnace. The samples were annealed at 1350 °C for 96 h, followed by furnace cooling. This temperature was selected as a target operating temperature for potential high-temperature alloys. [2001Hil] admitted that the phase compositions in furnacecooled samples do not represent true isothermal conditions, but they were more concerned with simulating the structure that develops after extended operation in practice. The phase equilibria were studied by optical and electron metallography, energy dispersive spectroscopy, and x-ray diffraction. The partial "isothermal section" for Pt-rich alloys at 1350 °C constructed by [2001Hil] is redrawn in Fig. 1. As the phase boundaries in the accepted Al-Pt diagram are tentative, no attempt is made here to modify the locations of the phase boundaries along the Al-Pt side. In Fig. 1, Cr additions increase the width of the Pt₃Al field by shifting the Pt-poor boundary to lower Pt levels. The (Pt) solid solution extends along the Pt-Cr side up to at least 50 at.% Cr. The width of the two-phase (Pt) + Pt₃Al field becomes extremely narrow (~1 at.%) above 25 at.% Cr. This limits the possibility of the production of a two-phase microstructure in Pt-based alloys, akin to the ($\gamma + \gamma'$) structure in Ni-rich alloys.

References

- **1986McA:** A.J. McAlister and D.J. Kahan, The Al-Pt (Aluminum-Platinum) System, *Bull. Alloy Phase Diagrams*, 1986, **7**(1), p 47-51
- 1998Mur: J.L. Murray, The Al-Cr (Aluminum-Chromium) System, J. Phase Equilibria, 1998, 19(4), p 368-375
- **2001Hil:** P.J. Hill, L.A. Cornish, P. Ellis, and M.J. Witcomb, The Effects of Ti and Cr Additions on the Phase Equilibria and Properties of (Pt)/Pt₃Al Alloys, *J. Alloys Compd.*, 2001, **322**, p 166-175

Fig. 1 Al-Cr-Pt partial isothermal section at 1350 °C [2001Hil]